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Lecture VIII

2PC and 3PC



Continuing our consistency saga
2

 Recall from prior lectures:
� Cloud-scale performance centers on replication

� Consistency of replication depends on our ability to talk 
about notions of time.
 Lets us use terminology like “If B accesses service S after A 

does, then B receives a response that is at least as current as 
the state on which A’s response was based.”

 Lamport: Don’t use real clocks, use logical clocks

 We have seen two forms, logical clocks and vector clocks



Next steps?
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 We’ll create a second kind of building block

� Two-phase commit

� It’s cousin, three-phase commit

 These commit protocols (or a similar pattern) arise 
often in distributed systems that replicate data

 Closely tied to “consensus” or “agreement” on 
events, and event order, and hence replication



The Two-Phase Commit Problem
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 The problem first was encountered in distributed
database systems

 Suppose a database system is updating some 
complicated data structures that include parts 
residing on more than one machine

 As they execute, a “transaction” is built up in which 
participants join as they are contacted



... so what’s the “problem”?
5

 Suppose that the transaction is interrupted by a crash 
before it finishes

� Perhaps, it was initiated by a leader process L

� By now, we’ve done some work at P and Q, but a crash 
causes P to reboot and “forget” the work L had started

 Implicitly assumes that P might be keeping the pending work in 
memory rather than in a safe place like on disk

 But this is very common, to speed things up

 Forced writes to a disk are very slow compared to in-memory 
logging of information, and “persistent” RAM memory is costly

� How can Q learn that it needs to back out?



The basic idea
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 We make a rule that P and Q (and other 
participants) treat pending work as transient

� You can safely crash and restart and discard it

� If such a sequence occurs, we call it a “forced abort”

 Transactional systems often treat commit and abort 
as a special kind of keyword



A transaction
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 L executes:

Begin

{

Read some stuff, get some locks

Do some updates at P, Q, R...

}

Commit

 If something goes wrong, executes “Abort”



Transaction...
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 Begins, has some kind of system-assigned id

 Acquires pending state

� Updates it did at various places it visited

� Read and Write locks it acquired

 If something goes horribly wrong, can Abort

 Otherwise if all went well, can request a Commit

� But commit can fail.  This is where the 2PC and 3PC 
algorithms are used



The Two-Phase Commit (2PC) problem
9

 Leader L has a set of places { P, Q, ... } it visited
� Each place may have some pending state for this xtn

� Takes form of pending updates or locks held

 Phase 1 starts

 L asks “OK to commit?” and P, Q ... must reply
� Each participant takes local actions to decide if it can vote in favor of 

commit
 May need to set up a persistent data structure, record that 2PC is underway 

and save info needed to perform desired action if a commit occurs

 “No” if something has caused them to discard the state of this transaction (lost 
updates, broken locks)

 “No “ usually occurs if a member crashes and then restarts

� No reply treated as “No” (handles failed members)



2PC (2)
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 If a member replies “Yes,” this means it has moved to a 
state we call prepared-to-commit
� Up to then it could just abort in a unilateral way; i.e., if data 

or locks were lost due to a crash/restart (or a timeout)
� Οnce it says “I’m prepared to commit”, must not lose locks or 

data.  
 probably needs to force data to disk at this stage

� Many systems push data to disk in background so all they 
need to do is update a single bit on disk: “prepared=true” 
but this disk-write is still considered costly event!

 Then can reply “Yes”



2PC (3)
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 L waits and eventually has replies from {P, Q, ... }
� L uses timer to limit wait time (duration of first phase)

 L tallies replies
� “No” if someone replies no, or if a timeout occurs

� “Yes” only if that participant actually replied “yes” and hence is now in 
the prepared-to-commit state

 Phase 1 ends

 Phase 2 starts: If all participants are prepared to commit, L sends 
(multicasts) a “Commit” message.  Else L must send “Abort”
� Notice that L could mistakenly abort.  

 E.g., timer in first phase goes off before all replies received
 This is ok



2PC (4)
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 If participant is prepared to commit, it waits for 
outcome to be known.  On receipt from L:

� If leader decided to Commit, participant “finalizes” the 
state by making updates permanent

� If leader decided to Abort, participant discards any 
updates

� Then can release locks



2PC protocol illustrated

ok to commit?

ok 
commit

Save to temp area 

Make permanent 

ok 
ok 



2PC basic skeleton (no failures)
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Coordinator:

multicast: ok to commit?

collect replies

all ok  multicast commit

else  multicast abort

Participant:
ok-to-commit 

save to temp area, reply ok
commit  make change permanent
abort  delete temp area



Failure cases to consider
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 Two possible worries
� Some participant might fail at some step of the protocol

� The leader might fail at some step of the protocol

 Notice how a participant moves from “participating” to 
“prepared-to-commit” to “committed/aborted”

 Leader moves from “doing work” to “inquiry” to 
“committed/aborted”

 Must ensure protocol terminates with the desired all-or-
nothing semantics



Can think about cross-product of states
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 This is common in distributed protocols

� We need to look at each member, and each state it 
can be in

� The system state is a vector (SL, SP, SQ, ...)

� Since each can be in 3 states there are 3N possible 
scenarios we need to think about!

 Many protocols are actually written in a state-
diagram form, but we’ll use English today



Handling participant failures
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 Suppose L stays healthy and only participants fail

 If a participant failed before voting, leader just aborts the 
protocol

 The participant might later recover and needs a way to find 
out what happened
� If failure causes it to forget the txn, no problem

� For cases where a participant may know about the txn and want to 
learn the outcome, we just keep a log of outcomes and it can look 
this txn up by its ID to find out

� Writing to this log is a role of the leader (and slows it down)



Handling participant failures (2) 
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 If participant votes “Yes” and hence is prepared, but then fails

 In this case it won’t receive the Commit/Abort message
� Solved because the leader logs the outcome

� On recovery that participant notices that it is in prepared-to-
commit state and consults the log

� Must find the outcome there and must wait if it can’t find the 
outcome information
 Important because apps often limit processing of new requests while 

in prepared-to-commit state



Participant recovery after failure
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 If participant in initial participating state, it can always 
unilaterally abort

 If participant in prepared-to-commit state, (i.e., had 
voted “Yes”), it must learn the outcome and can’t 
terminate the txn until it does
� E.g., must keep holding any pending updates and locks
� Can’t release them without knowing outcome
� Obtains outcome from L, or from the outcomes log

 If participant in commit/abort state, needs to complete 
commit/abort action even if repeatedly disrupted by 
failures while doing so
� Action must be idempotent (e.g., copying a file)



2PC extended to handle participant 
failures
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Coordinator:

multicast: ok to commit?

collect replies

all ok  log “commit” to “outcomes” table 

multicast commit

else  multicast abort

collect acks

garbage-collect protocol outcome info

Participant:
ok-to-commit 

save to temp area, reply ok
commit  make change permanent
abort  delete temp area

After failure:
for each pending protocol “session”

contact coordinator to learn outcome

If leader tracks protocol outcome until all participants are known to have completed commit
or abort actions  EXTRA PHASE needed to collect acks from participants



Handling coordinator failure
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 Suppose a participant P votes “Yes” but then leader L 
seems to vanish
� Maybe it died... maybe became disconnected from the 

system (partitioning failure)
� P is “stuck”.  We say that it is “blocked”

 Can P deduce the state?
� If log (stored not on L) reports outcome, P can make 

progress
 As long as we follow rule that L logs outcome before telling 

anyone, it is safe to commit in this case

� What if the log doesn’t know the outcome or there is no log?
 Could ask other participants



Handling coordinator failure 
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 When participant P enters prepared-to-commit state sets 
timer
� On timeout, seeks to complete protocol on its own
� If P was told the list of participants when L contacted it for its 

vote, P could poll them
� E.g. P asks Q, R, S... “what state are you in?”

 Suppose someone says “commit” or “abort”?
� Now P can just commit or abort!
� Repeats second phase of original protocol (so all can 

commit/abort)

 But what if N-1 say “prepared-to-commit ” and 1 is 
inaccessible?



P remains blocked in this case
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 L plus one member, perhaps S, might know outcome

 P is unable to determine what L decided 

 Worse possible situation: L is both leader and also 
participant and hence a single failure leaves the 
other participants blocked!



2PC extended – on leader/net failure, participants try 
to terminate protocol without blocking
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Coordinator:

multicast: ok to commit?

collect replies

all ok  log “commit” to “outcomes” table

wait until safe on persistent store 

multicast commit

else  multicast abort

collect acks

After failure:

for each pending protocol “session” in outcomes table

send outcome (commit or abort)

wait for acks

Periodically:

query each process: terminated protocols?

determine fully terminated protocol sessions

2PC to garbage-collect protocol outcome info

Participant: first time msg received
ok-to-commit 

save to temp area, reply ok
commit  log outcome, make change permanent
abort  log outcome, delete temp area

Message is a duplicate (recovering coordinator)
send ack

After failure:
for each pending protocol “session”

contact coordinator to learn outcome
After timeout in prepare-to-commit state:

query other participants about state
outcome can be deduced 

run coordinator-recovery protocol
outcome uncertain 

must wait



2PC -- version from previous page
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 Gains higher availability at cost of more 
communication

� Participants sometimes can terminate even if 
coordinator down

� Must garbage collect outcomes held for sessions that 
have terminated at all participants

 Can still block!

� If failure of both coordinator and a participant occurs 
during decision stage



Skeen & Stonebraker: 3PC
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 Skeen proposed a 3PC protocol, that adds one step 
(and omits any log service)

 With 3PC the leader runs 3 rounds of communication:
� “Are you able to commit”?  Participants reply “Yes/No”

� “Abort” or “Prepare to commit”.  They reply “OK”

� “Commit”

 Notice that Abort happens in round 2 but Commit only 
can happen in round 3

 Ensures state of system can be deduced by subset of 
processes, provided they can communicate reliably



State space gets even larger!
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 Now we need to think of 5N states

� But Skeen points out that many can’t occur

� For example we can’t see a mix of processes that are 
in the Commit and Abort state

 We could see some in “Participating” and some in “Yes”

 We could see some in “Yes” and some in “Prepared”

 We could see some in “Prepared” and some in “Commit”

� But by pushing “Commit” and “Abort” into different 
rounds we reduce uncertainty



3PC recovery is complex
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 Skeen shows how, on recovery, we can poll the system state

 Any (or all) processes can do this

 Can always deduce a safe outcome... provided that we 
have 
� Fail-stop failures (processes fail only by crashing)

� Failures are accurately detectable operational processes

 3PC, without any log service, and with accurate failure 
detection is guaranteed to be non-blocking



3PC outline (garbage collection not shown) 
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Coordinator:

multicast: ok to commit?

collect replies

all ok  log “precommit” 

multicast precommit

else  multicast abort

collect acks from non-failed participants

all ack  log “commit”

multicast commit

collect acks

garbage-collect protocol outcome info

Participant: logs state on each message
ok-to-commit 

save to temp area, reply ok
precommit 

enter precommit state, acknowledge
commit 

make change permanent
abort 

delete temp area

After failure:
collect participant state information
any precommit or committed 

push forward to commit
else 

push back to abort



3PC
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 3PC, without any log service, and with accurate failure 

detection is guaranteed to be non-blocking

 However, in actual systems 

� inaccurate failure detections and net partitions are very 
possible 

� hence, in reality 3PC is blocking



Failure detection in a network
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 Many think of Skeen’s 3PC as a practical protocol

 But to really use 3PC we would need a perfect 
failure detection service that never makes mistakes

� It always says “P has failed” if, in fact, P has failed

� And it never says “P has failed” if P is actually up

 Is it possible to build such a failure service?



Notions of failure 
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 This leads us to think about failure “models”

 Many things can fail in a distributed system
� Network can drop packets, or the O/S can do so

� Links can break causing a network partition that isolates one or 
more nodes

� Processes can fail by halting suddenly

� A clock could malfunction, causing timers to fire incorrectly

� A machine could freeze up for a while, then resume

� Processes can corrupt their memory and behave badly without 
actually crashing

� A process could be taken over by a virus and might behave in a 
malicious way that deliberately disrupts our system

Worst: Byzantine

Best: “Fail-stop” with trusted notifications



What do “real” systems do?
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 Linux and Windows use timers for failure detection

� These can fire even if the remote side is healthy

� So we get “inaccurate” failure detections

� Of course many kinds of crashes can be sensed 
accurately so for those, we get trusted notifications

 Some applications depend on TCP, but TCP itself 
uses timers and so has the same problem



Aside: Byzantine case
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 Much debate around this

� Do we design systems assuming a Byzantine failure 
model?

 Since programs are buggy (always), it can be 
appealing to just use a Byzantine model.  A bug 
gives random corrupt behavior... like a mild attack

 But Byzantine model is hard to work with and can 
be costly (you often must “outvote” the bad process)



Failure detection in a network
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 Return to our use case

 2PC and 3PC are normally used in standard Linux 
or Windows systems with timers to detect failure
� Hence we get inaccurate failure sensing with possible 

mistakes (e.g. P thinks L is faulty but L is fine)

� 3PC is thus also blocking in this case, although less 
likely to block than 2PC

� Can prove that any commit protocol would have 
blocking states with inaccurate failure detection



World-Wide Failure Sensing
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 Vogels wrote a paper in which he argued that we 
really could do much better than using just timers

� In a cloud computing setting, the cloud management 
system often “forces” slow nodes to crash and restart

 Used as a kind of all-around fixer-upper

 Also helpful for elasticity and automated management



The Postman Always Rings Twice
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 Vogels suggests that there are many reasons a 
machine might timeout and yet not be faulty

 Suppose the mailman wants to see you…

� He rings and waits a few seconds

� Nobody comes to the door... should he 
assume you’ve died?

 Hopefully not



Causes of delay
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 Scheduling can be sluggish

 A node might get a burst of messages that overflow its 
input sockets and triggers message loss, or network 
could have some kind of malfunction in its routers/links

 A machine might become overloaded and slow because 
too many virtual machines were mapped on it

 An application might run wild and page heavily



Vogels suggests?
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 He recommended that we add some kind of failure 
monitoring service as a standard network component

 Instead of relying on timeout, even protocols like remote 
procedure call (RPC) and TCP would ask the service 
and it would tell them

 It could do a bit of sleuthing first... e.g. ask the O/S on 
that machine for information... check the network...



Why clouds don’t do this
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 Hamilton: In the cloud our focus tends to be on keeping 
the “majority” of the system running
� No matter what the excuse it might have, if some node is 

slow it makes more sense to move on

� Keeping the cloud up, as a whole, is way more valuable 
than waiting for some slow node to catch up

� End-user experience is what counts!

 So the cloud is casual about killing things

 ... and avoids services like “failure sensing” since they 
could become bottlenecks



Also, most software is buggy!
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 A mix of “Bohrbugs” and “Heisenbugs”
� Bohrbugs: Boring and easy to fix.  Like Bohr model of 

the atom

� Heisenbugs: They seem to hide when you try to pin them 
down (caused by concurrency and problems that 
corrupt a data structure that won’t be visited for a 
while).  Hard to fix because crash seems unrelated to 
bug

 Studies show that pretty much all programs retain 
bugs over their full lifetime.
� So if something is acting strange, it may be failing!



Worst of all... timing is flakey
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 At cloud-scale, with millions of nodes, we can’t trust 
timers at all

 Too many things can cause problems that manifest 
as timing faults or timeouts

 There are some famous models... and none is ideal 
for describing real systems



Synchronous and Asynchronous 
Executions

p q r p q r

…processes share a 
synchronized clock

In the synchronous model 
messages arrive on time

… and failures are easily 
detected

None of these properties 
holds in an asynchronous 

model

43

Failures are very easy to detect. Impossible to detect difference between

a crashed node and network delay. 



Reality: neither model applies

 Real distributed systems aren’t synchronous
� Although a flight control computer can come close

 Nor are they asynchronous
� Software often treats them as asynchronous

� In reality, clocks work well… so in practice we often use time cautiously 
and make assumptions about upper bounds on message delays

 For our purposes we usually start with an asynchronous model
� Subsequently enrich it with sources of time when useful.

� We sometimes assume a “public key” system.  This lets us sign or encrypt 
data where need arises

44



Thought problem

 Harry and Sally will meet for lunch.  They’ll eat in the 
cafeteria unless both are sure that the weather is 
good
� Sally’s cubicle is in the basement, so Harry will send email

� Both have lots of meetings, and might not read email.  So 
she’ll acknowledge his message.  

� They’ll meet inside if one or the other is away from their 
desk and misses the email.

 Harry sees sun.  Sends email.  Sally acks.  Can they 
meet outside?

45



Meeting for lunch

Harry Sally

H: Sally, the weather is 
beautiful!  Let’s meet at the 
sandwich stand outside.

S: I can hardly wait.  I’ve been 
in this dungeon studying and 
haven’t seen the sun in weeks!

46



They eat inside!  Harry reasons:

 “Sally sent an acknowledgement but doesn’t know if 
I read it

 “If I didn’t get her acknowledgement I’ll assume she 
didn’t get my email

 “In that case, I’ll go to the cafeteria

 “She’s uncertain, so she’ll meet me there

47



Harry had better send an Ack

Great!  See yah…

48

Harry Sally

H: Sally, the weather is 
beautiful!  Let’s meet at the 
sandwich stand outside.

S: I can hardly wait.  I’ve been 
in this dungeon studying and 
haven’t seen the sun in weeks!



Why didn’t this help?

 Sally got the ack… but she realizes that Harry 
won’t be sure she got it

 Being unsure, he’s in the same state as before

 So he’ll go to the cafeteria, being dull and logical.  
And so she meets him there.

49



New and improved protocol

 Sally sends an ack.  Harry acks the ack.  Sally acks 
the ack of the ack….

 Suppose that noon arrives and Sally has sent her 
117’th ack.

� Should she assume that lunch is outside in the sun, or 
inside in the cafeteria?

50



How Harry and Sally’s romance ended
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Harry Sally

H: Sally, the weather is 
beautiful!  Let’s meet at the 
sandwich stand outside.

S: I can hardly wait.  I’ve been in this 
dungeon studying and haven’t seen the 
sun in weeks!

Great!  See yah…

Got that…

Maybe tomorrow?

Yup…

Oops, too late for lunch

. . .



Moral of the story?
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 Logicians are dull people and have miserable lives.

 The real world demands leaps of faith: pure logic 
isn’t enough.  

 For our computing systems, this creates a puzzle, 
since software normally behaves logically!



How do real people meet for lunch?
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 They send one email, then go outside

� Sally doesn’t need an ack in the original protocol to 
ensure Harry hasn’t failed in some way; she just 
assumes he got her reply

� Mishaps happen, now and then, but we deal with those.

� In fact we know perfectly well that we can’t achieve 
perfect agreement, and we cope with that

� In some sense a high probability of meeting outside for 
lunch is just fine and we don’t insist on more



Things we just can’t do (in distributed 
systems)

 We can’t detect failures in a trustworthy, consistent 
manner

 We can’t reach a state of “common knowledge” 
concerning something not agreed upon in the first 
place

 We can’t guarantee agreement on things (election of 
a leader, update to a replicated variable) in a way 
certain to tolerate failures

54



Back to 2PC and 3PC
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 Summary of the state of the world
� 3PC would be better than 2PC in a perfect world

� In the real world, 3PC is more costly (extra round) but 
blocks just the same (inaccurate failure detection)

� Failure detection tools could genuinely help but the trend in 
large data centers has been in the opposite direction


