
Distributed Systems
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Lecture VIII

2PC and 3PC



Continuing our consistency saga
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 Recall from prior lectures:
� Cloud-scale performance centers on replication

� Consistency of replication depends on our ability to talk 
about notions of time.
 Lets us use terminology like “If B accesses service S after A 

does, then B receives a response that is at least as current as 
the state on which A’s response was based.”

 Lamport: Don’t use real clocks, use logical clocks

 We have seen two forms, logical clocks and vector clocks



Next steps?
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 We’ll create a second kind of building block

� Two-phase commit

� It’s cousin, three-phase commit

 These commit protocols (or a similar pattern) arise 
often in distributed systems that replicate data

 Closely tied to “consensus” or “agreement” on 
events, and event order, and hence replication



The Two-Phase Commit Problem
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 The problem first was encountered in distributed
database systems

 Suppose a database system is updating some 
complicated data structures that include parts 
residing on more than one machine

 As they execute, a “transaction” is built up in which 
participants join as they are contacted



... so what’s the “problem”?
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 Suppose that the transaction is interrupted by a crash 
before it finishes

� Perhaps, it was initiated by a leader process L

� By now, we’ve done some work at P and Q, but a crash 
causes P to reboot and “forget” the work L had started

 Implicitly assumes that P might be keeping the pending work in 
memory rather than in a safe place like on disk

 But this is very common, to speed things up

 Forced writes to a disk are very slow compared to in-memory 
logging of information, and “persistent” RAM memory is costly

� How can Q learn that it needs to back out?



The basic idea
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 We make a rule that P and Q (and other 
participants) treat pending work as transient

� You can safely crash and restart and discard it

� If such a sequence occurs, we call it a “forced abort”

 Transactional systems often treat commit and abort 
as a special kind of keyword



A transaction
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 L executes:

Begin

{

Read some stuff, get some locks

Do some updates at P, Q, R...

}

Commit

 If something goes wrong, executes “Abort”



Transaction...
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 Begins, has some kind of system-assigned id

 Acquires pending state

� Updates it did at various places it visited

� Read and Write locks it acquired

 If something goes horribly wrong, can Abort

 Otherwise if all went well, can request a Commit

� But commit can fail.  This is where the 2PC and 3PC 
algorithms are used



The Two-Phase Commit (2PC) problem
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 Leader L has a set of places { P, Q, ... } it visited
� Each place may have some pending state for this xtn

� Takes form of pending updates or locks held

 Phase 1 starts

 L asks “OK to commit?” and P, Q ... must reply
� Each participant takes local actions to decide if it can vote in favor of 

commit
 May need to set up a persistent data structure, record that 2PC is underway 

and save info needed to perform desired action if a commit occurs

 “No” if something has caused them to discard the state of this transaction (lost 
updates, broken locks)

 “No “ usually occurs if a member crashes and then restarts

� No reply treated as “No” (handles failed members)



2PC (2)
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 If a member replies “Yes,” this means it has moved to a 
state we call prepared-to-commit
� Up to then it could just abort in a unilateral way; i.e., if data 

or locks were lost due to a crash/restart (or a timeout)
� Οnce it says “I’m prepared to commit”, must not lose locks or 

data.  
 probably needs to force data to disk at this stage

� Many systems push data to disk in background so all they 
need to do is update a single bit on disk: “prepared=true” 
but this disk-write is still considered costly event!

 Then can reply “Yes”



2PC (3)
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 L waits and eventually has replies from {P, Q, ... }
� L uses timer to limit wait time (duration of first phase)

 L tallies replies
� “No” if someone replies no, or if a timeout occurs

� “Yes” only if that participant actually replied “yes” and hence is now in 
the prepared-to-commit state

 Phase 1 ends

 Phase 2 starts: If all participants are prepared to commit, L sends 
(multicasts) a “Commit” message.  Else L must send “Abort”
� Notice that L could mistakenly abort.  

 E.g., timer in first phase goes off before all replies received
 This is ok



2PC (4)
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 If participant is prepared to commit, it waits for 
outcome to be known.  On receipt from L:

� If leader decided to Commit, participant “finalizes” the 
state by making updates permanent

� If leader decided to Abort, participant discards any 
updates

� Then can release locks



2PC protocol illustrated

ok to commit?

ok 
commit

Save to temp area 

Make permanent 

ok 
ok 



2PC basic skeleton (no failures)
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Coordinator:

multicast: ok to commit?

collect replies

all ok  multicast commit

else  multicast abort

Participant:
ok-to-commit 

save to temp area, reply ok
commit  make change permanent
abort  delete temp area



Failure cases to consider
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 Two possible worries
� Some participant might fail at some step of the protocol

� The leader might fail at some step of the protocol

 Notice how a participant moves from “participating” to 
“prepared-to-commit” to “committed/aborted”

 Leader moves from “doing work” to “inquiry” to 
“committed/aborted”

 Must ensure protocol terminates with the desired all-or-
nothing semantics



Can think about cross-product of states
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 This is common in distributed protocols

� We need to look at each member, and each state it 
can be in

� The system state is a vector (SL, SP, SQ, ...)

� Since each can be in 3 states there are 3N possible 
scenarios we need to think about!

 Many protocols are actually written in a state-
diagram form, but we’ll use English today



Handling participant failures
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 Suppose L stays healthy and only participants fail

 If a participant failed before voting, leader just aborts the 
protocol

 The participant might later recover and needs a way to find 
out what happened
� If failure causes it to forget the txn, no problem

� For cases where a participant may know about the txn and want to 
learn the outcome, we just keep a log of outcomes and it can look 
this txn up by its ID to find out

� Writing to this log is a role of the leader (and slows it down)



Handling participant failures (2) 
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 If participant votes “Yes” and hence is prepared, but then fails

 In this case it won’t receive the Commit/Abort message
� Solved because the leader logs the outcome

� On recovery that participant notices that it is in prepared-to-
commit state and consults the log

� Must find the outcome there and must wait if it can’t find the 
outcome information
 Important because apps often limit processing of new requests while 

in prepared-to-commit state



Participant recovery after failure
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 If participant in initial participating state, it can always 
unilaterally abort

 If participant in prepared-to-commit state, (i.e., had 
voted “Yes”), it must learn the outcome and can’t 
terminate the txn until it does
� E.g., must keep holding any pending updates and locks
� Can’t release them without knowing outcome
� Obtains outcome from L, or from the outcomes log

 If participant in commit/abort state, needs to complete 
commit/abort action even if repeatedly disrupted by 
failures while doing so
� Action must be idempotent (e.g., copying a file)



2PC extended to handle participant 
failures
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Coordinator:

multicast: ok to commit?

collect replies

all ok  log “commit” to “outcomes” table 

multicast commit

else  multicast abort

collect acks

garbage-collect protocol outcome info

Participant:
ok-to-commit 

save to temp area, reply ok
commit  make change permanent
abort  delete temp area

After failure:
for each pending protocol “session”

contact coordinator to learn outcome

If leader tracks protocol outcome until all participants are known to have completed commit
or abort actions  EXTRA PHASE needed to collect acks from participants



Handling coordinator failure
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 Suppose a participant P votes “Yes” but then leader L 
seems to vanish
� Maybe it died... maybe became disconnected from the 

system (partitioning failure)
� P is “stuck”.  We say that it is “blocked”

 Can P deduce the state?
� If log (stored not on L) reports outcome, P can make 

progress
 As long as we follow rule that L logs outcome before telling 

anyone, it is safe to commit in this case

� What if the log doesn’t know the outcome or there is no log?
 Could ask other participants



Handling coordinator failure 
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 When participant P enters prepared-to-commit state sets 
timer
� On timeout, seeks to complete protocol on its own
� If P was told the list of participants when L contacted it for its 

vote, P could poll them
� E.g. P asks Q, R, S... “what state are you in?”

 Suppose someone says “commit” or “abort”?
� Now P can just commit or abort!
� Repeats second phase of original protocol (so all can 

commit/abort)

 But what if N-1 say “prepared-to-commit ” and 1 is 
inaccessible?



P remains blocked in this case
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 L plus one member, perhaps S, might know outcome

 P is unable to determine what L decided 

 Worse possible situation: L is both leader and also 
participant and hence a single failure leaves the 
other participants blocked!



2PC extended – on leader/net failure, participants try 
to terminate protocol without blocking
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Coordinator:

multicast: ok to commit?

collect replies

all ok  log “commit” to “outcomes” table

wait until safe on persistent store 

multicast commit

else  multicast abort

collect acks

After failure:

for each pending protocol “session” in outcomes table

send outcome (commit or abort)

wait for acks

Periodically:

query each process: terminated protocols?

determine fully terminated protocol sessions

2PC to garbage-collect protocol outcome info

Participant: first time msg received
ok-to-commit 

save to temp area, reply ok
commit  log outcome, make change permanent
abort  log outcome, delete temp area

Message is a duplicate (recovering coordinator)
send ack

After failure:
for each pending protocol “session”

contact coordinator to learn outcome
After timeout in prepare-to-commit state:

query other participants about state
outcome can be deduced 

run coordinator-recovery protocol
outcome uncertain 

must wait



2PC -- version from previous page
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 Gains higher availability at cost of more 
communication

� Participants sometimes can terminate even if 
coordinator down

� Must garbage collect outcomes held for sessions that 
have terminated at all participants

 Can still block!

� If failure of both coordinator and a participant occurs 
during decision stage



Skeen & Stonebraker: 3PC
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 Skeen proposed a 3PC protocol, that adds one step 
(and omits any log service)

 With 3PC the leader runs 3 rounds of communication:
� “Are you able to commit”?  Participants reply “Yes/No”

� “Abort” or “Prepare to commit”.  They reply “OK”

� “Commit”

 Notice that Abort happens in round 2 but Commit only 
can happen in round 3

 Ensures state of system can be deduced by subset of 
processes, provided they can communicate reliably



State space gets even larger!
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 Now we need to think of 5N states

� But Skeen points out that many can’t occur

� For example we can’t see a mix of processes that are 
in the Commit and Abort state

 We could see some in “Participating” and some in “Yes”

 We could see some in “Yes” and some in “Prepared”

 We could see some in “Prepared” and some in “Commit”

� But by pushing “Commit” and “Abort” into different 
rounds we reduce uncertainty



3PC recovery is complex
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 Skeen shows how, on recovery, we can poll the system state

 Any (or all) processes can do this

 Can always deduce a safe outcome... provided that we 
have 
� Fail-stop failures (processes fail only by crashing)

� Failures are accurately detectable operational processes

 3PC, without any log service, and with accurate failure 
detection is guaranteed to be non-blocking



3PC outline (garbage collection not shown) 
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Coordinator:

multicast: ok to commit?

collect replies

all ok  log “precommit” 

multicast precommit

else  multicast abort

collect acks from non-failed participants

all ack  log “commit”

multicast commit

collect acks

garbage-collect protocol outcome info

Participant: logs state on each message
ok-to-commit 

save to temp area, reply ok
precommit 

enter precommit state, acknowledge
commit 

make change permanent
abort 

delete temp area

After failure:
collect participant state information
any precommit or committed 

push forward to commit
else 

push back to abort



3PC
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 3PC, without any log service, and with accurate failure 

detection is guaranteed to be non-blocking

 However, in actual systems 

� inaccurate failure detections and net partitions are very 
possible 

� hence, in reality 3PC is blocking



Failure detection in a network
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 Many think of Skeen’s 3PC as a practical protocol

 But to really use 3PC we would need a perfect 
failure detection service that never makes mistakes

� It always says “P has failed” if, in fact, P has failed

� And it never says “P has failed” if P is actually up

 Is it possible to build such a failure service?



Notions of failure 
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 This leads us to think about failure “models”

 Many things can fail in a distributed system
� Network can drop packets, or the O/S can do so

� Links can break causing a network partition that isolates one or 
more nodes

� Processes can fail by halting suddenly

� A clock could malfunction, causing timers to fire incorrectly

� A machine could freeze up for a while, then resume

� Processes can corrupt their memory and behave badly without 
actually crashing

� A process could be taken over by a virus and might behave in a 
malicious way that deliberately disrupts our system

Worst: Byzantine

Best: “Fail-stop” with trusted notifications



What do “real” systems do?
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 Linux and Windows use timers for failure detection

� These can fire even if the remote side is healthy

� So we get “inaccurate” failure detections

� Of course many kinds of crashes can be sensed 
accurately so for those, we get trusted notifications

 Some applications depend on TCP, but TCP itself 
uses timers and so has the same problem



Aside: Byzantine case
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 Much debate around this

� Do we design systems assuming a Byzantine failure 
model?

 Since programs are buggy (always), it can be 
appealing to just use a Byzantine model.  A bug 
gives random corrupt behavior... like a mild attack

 But Byzantine model is hard to work with and can 
be costly (you often must “outvote” the bad process)



Failure detection in a network
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 Return to our use case

 2PC and 3PC are normally used in standard Linux 
or Windows systems with timers to detect failure
� Hence we get inaccurate failure sensing with possible 

mistakes (e.g. P thinks L is faulty but L is fine)

� 3PC is thus also blocking in this case, although less 
likely to block than 2PC

� Can prove that any commit protocol would have 
blocking states with inaccurate failure detection



World-Wide Failure Sensing
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 Vogels wrote a paper in which he argued that we 
really could do much better than using just timers

� In a cloud computing setting, the cloud management 
system often “forces” slow nodes to crash and restart

 Used as a kind of all-around fixer-upper

 Also helpful for elasticity and automated management



The Postman Always Rings Twice
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 Vogels suggests that there are many reasons a 
machine might timeout and yet not be faulty

 Suppose the mailman wants to see you…

� He rings and waits a few seconds

� Nobody comes to the door... should he 
assume you’ve died?

 Hopefully not



Causes of delay
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 Scheduling can be sluggish

 A node might get a burst of messages that overflow its 
input sockets and triggers message loss, or network 
could have some kind of malfunction in its routers/links

 A machine might become overloaded and slow because 
too many virtual machines were mapped on it

 An application might run wild and page heavily



Vogels suggests?
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 He recommended that we add some kind of failure 
monitoring service as a standard network component

 Instead of relying on timeout, even protocols like remote 
procedure call (RPC) and TCP would ask the service 
and it would tell them

 It could do a bit of sleuthing first... e.g. ask the O/S on 
that machine for information... check the network...



Why clouds don’t do this
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 Hamilton: In the cloud our focus tends to be on keeping 
the “majority” of the system running
� No matter what the excuse it might have, if some node is 

slow it makes more sense to move on

� Keeping the cloud up, as a whole, is way more valuable 
than waiting for some slow node to catch up

� End-user experience is what counts!

 So the cloud is casual about killing things

 ... and avoids services like “failure sensing” since they 
could become bottlenecks



Also, most software is buggy!
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 A mix of “Bohrbugs” and “Heisenbugs”
� Bohrbugs: Boring and easy to fix.  Like Bohr model of 

the atom

� Heisenbugs: They seem to hide when you try to pin them 
down (caused by concurrency and problems that 
corrupt a data structure that won’t be visited for a 
while).  Hard to fix because crash seems unrelated to 
bug

 Studies show that pretty much all programs retain 
bugs over their full lifetime.
� So if something is acting strange, it may be failing!



Worst of all... timing is flakey
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 At cloud-scale, with millions of nodes, we can’t trust 
timers at all

 Too many things can cause problems that manifest 
as timing faults or timeouts

 There are some famous models... and none is ideal 
for describing real systems



Synchronous and Asynchronous 
Executions

p q r p q r

…processes share a 
synchronized clock

In the synchronous model 
messages arrive on time

… and failures are easily 
detected

None of these properties 
holds in an asynchronous 

model
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Failures are very easy to detect. Impossible to detect difference between

a crashed node and network delay. 



Reality: neither model applies

 Real distributed systems aren’t synchronous
� Although a flight control computer can come close

 Nor are they asynchronous
� Software often treats them as asynchronous

� In reality, clocks work well… so in practice we often use time cautiously 
and make assumptions about upper bounds on message delays

 For our purposes we usually start with an asynchronous model
� Subsequently enrich it with sources of time when useful.

� We sometimes assume a “public key” system.  This lets us sign or encrypt 
data where need arises
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Thought problem

 Harry and Sally will meet for lunch.  They’ll eat in the 
cafeteria unless both are sure that the weather is 
good
� Sally’s cubicle is in the basement, so Harry will send email

� Both have lots of meetings, and might not read email.  So 
she’ll acknowledge his message.  

� They’ll meet inside if one or the other is away from their 
desk and misses the email.

 Harry sees sun.  Sends email.  Sally acks.  Can they 
meet outside?
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Meeting for lunch

Harry Sally

H: Sally, the weather is 
beautiful!  Let’s meet at the 
sandwich stand outside.

S: I can hardly wait.  I’ve been 
in this dungeon studying and 
haven’t seen the sun in weeks!
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They eat inside!  Harry reasons:

 “Sally sent an acknowledgement but doesn’t know if 
I read it

 “If I didn’t get her acknowledgement I’ll assume she 
didn’t get my email

 “In that case, I’ll go to the cafeteria

 “She’s uncertain, so she’ll meet me there
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Harry had better send an Ack

Great!  See yah…

48

Harry Sally

H: Sally, the weather is 
beautiful!  Let’s meet at the 
sandwich stand outside.

S: I can hardly wait.  I’ve been 
in this dungeon studying and 
haven’t seen the sun in weeks!



Why didn’t this help?

 Sally got the ack… but she realizes that Harry 
won’t be sure she got it

 Being unsure, he’s in the same state as before

 So he’ll go to the cafeteria, being dull and logical.  
And so she meets him there.
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New and improved protocol

 Sally sends an ack.  Harry acks the ack.  Sally acks 
the ack of the ack….

 Suppose that noon arrives and Sally has sent her 
117’th ack.

� Should she assume that lunch is outside in the sun, or 
inside in the cafeteria?
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How Harry and Sally’s romance ended
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Harry Sally

H: Sally, the weather is 
beautiful!  Let’s meet at the 
sandwich stand outside.

S: I can hardly wait.  I’ve been in this 
dungeon studying and haven’t seen the 
sun in weeks!

Great!  See yah…

Got that…

Maybe tomorrow?

Yup…

Oops, too late for lunch

. . .



Moral of the story?
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 Logicians are dull people and have miserable lives.

 The real world demands leaps of faith: pure logic 
isn’t enough.  

 For our computing systems, this creates a puzzle, 
since software normally behaves logically!



How do real people meet for lunch?
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 They send one email, then go outside

� Sally doesn’t need an ack in the original protocol to 
ensure Harry hasn’t failed in some way; she just 
assumes he got her reply

� Mishaps happen, now and then, but we deal with those.

� In fact we know perfectly well that we can’t achieve 
perfect agreement, and we cope with that

� In some sense a high probability of meeting outside for 
lunch is just fine and we don’t insist on more



Things we just can’t do (in distributed 
systems)

 We can’t detect failures in a trustworthy, consistent 
manner

 We can’t reach a state of “common knowledge” 
concerning something not agreed upon in the first 
place

 We can’t guarantee agreement on things (election of 
a leader, update to a replicated variable) in a way 
certain to tolerate failures
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Back to 2PC and 3PC
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 Summary of the state of the world
� 3PC would be better than 2PC in a perfect world

� In the real world, 3PC is more costly (extra round) but 
blocks just the same (inaccurate failure detection)

� Failure detection tools could genuinely help but the trend in 
large data centers has been in the opposite direction


